#define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #define LEN(arr) (sizeof(arr) / sizeof(arr[0])) #define MAX(a, b) (a > b ? a : b) #define BLOCK(cmd, interval, signal) \ { "echo \"$(" cmd ")\"", interval, signal } typedef const struct { const char* command; const unsigned int interval; const unsigned int signal; } Block; #include "config.h" #ifdef CLICKABLE_BLOCKS #undef CLICKABLE_BLOCKS #define CLICKABLE_BLOCKS 1 #else #define CLICKABLE_BLOCKS 0 #endif #ifdef LEADING_DELIMITER #undef LEADING_DELIMITER #define LEADING_DELIMITER 1 #else #define LEADING_DELIMITER 0 #endif static Display* dpy; static int screen; static Window root; static unsigned short statusContinue = 1; static struct epoll_event event; static int pipes[LEN(blocks)][2]; static int timer = 0, timerTick = 0, maxInterval = 0; static int signalFD; static int epollFD; static int execLock = 0; // Longest UTF-8 character is 4 bytes long static char outputs[LEN(blocks)][CMDLENGTH * 4 + 1 + CLICKABLE_BLOCKS]; static char statusBar[2][LEN(blocks) * (LEN(outputs[0]) - 1) + (LEN(blocks) - 1 + LEADING_DELIMITER) * (LEN(DELIMITER) - 1) + 1]; void (*writeStatus)(); int gcd(int a, int b) { int temp; while (b > 0) { temp = a % b; a = b; b = temp; } return a; } void closePipe(int* pipe) { close(pipe[0]); close(pipe[1]); } void execBlock(int i, const char* button) { // Ensure only one child process exists per block at an instance if (execLock & 1 << i) return; // Lock execution of block until current instance finishes execution execLock |= 1 << i; if (fork() == 0) { close(pipes[i][0]); dup2(pipes[i][1], STDOUT_FILENO); close(pipes[i][1]); if (button) setenv("BLOCK_BUTTON", button, 1); execl("/bin/sh", "sh", "-c", blocks[i].command, (char*)NULL); _exit(1); } } void execBlocks(unsigned int time) { for (int i = 0; i < LEN(blocks); i++) if (time == 0 || (blocks[i].interval != 0 && time % blocks[i].interval == 0)) execBlock(i, NULL); } int getStatus(char* new, char* old) { strcpy(old, new); new[0] = '\0'; for (int i = 0; i < LEN(blocks); i++) { #if LEADING_DELIMITER if (strlen(outputs[i])) #else if (strlen(new) && strlen(outputs[i])) #endif strcat(new, DELIMITER); strcat(new, outputs[i]); } return strcmp(new, old); } void updateBlock(int i) { char* output = outputs[i]; char buffer[LEN(outputs[0]) - CLICKABLE_BLOCKS]; int bytesRead = read(pipes[i][0], buffer, LEN(buffer)); // Trim UTF-8 string to desired length int count = 0, j = 0; while (buffer[j] != '\n' && count <= CMDLENGTH) { // Increment count for non-continuation bytes if ((buffer[j++] & 0xc0) != 0x80) count++; } // Cache last character and replace it with a trailing space char ch = buffer[j]; buffer[j] = ' '; // Trim trailing spaces while (j >= 0 && buffer[j] == ' ') j--; buffer[j + 1] = 0; // Clear the pipe if (bytesRead == LEN(buffer)) { while (ch != '\n' && read(pipes[i][0], &ch, 1) == 1) ; } #if CLICKABLE_BLOCKS if (bytesRead > 1 && blocks[i].signal > 0) { output[0] = blocks[i].signal; output++; } #endif strcpy(output, buffer); // Remove execution lock for the current block execLock &= ~(1 << i); } void debug() { // Only write out if text has changed if (!getStatus(statusBar[0], statusBar[1])) return; write(STDOUT_FILENO, statusBar[0], strlen(statusBar[0])); write(STDOUT_FILENO, "\n", 1); } void setRoot() { // Only set root if text has changed if (!getStatus(statusBar[0], statusBar[1])) return; Display* d = XOpenDisplay(NULL); if (d) dpy = d; screen = DefaultScreen(dpy); root = RootWindow(dpy, screen); XStoreName(dpy, root, statusBar[0]); XCloseDisplay(dpy); } void signalHandler() { struct signalfd_siginfo info; read(signalFD, &info, sizeof(info)); unsigned int signal = info.ssi_signo; switch (signal) { case SIGALRM: // Schedule the next timer event and execute blocks alarm(timerTick); execBlocks(timer); // Wrap `timer` to the interval [1, `maxInterval`] timer = (timer + timerTick - 1) % maxInterval + 1; return; case SIGUSR1: // Update all blocks on receiving SIGUSR1 execBlocks(0); return; } for (int j = 0; j < LEN(blocks); j++) { if (blocks[j].signal == signal - SIGRTMIN) { char button[] = {'0' + info.ssi_int & 0xff, 0}; execBlock(j, button); break; } } } void termHandler() { statusContinue = 0; } void setupSignals() { sigset_t handledSignals; sigemptyset(&handledSignals); sigaddset(&handledSignals, SIGUSR1); sigaddset(&handledSignals, SIGALRM); // Append all block signals to `handledSignals` for (int i = 0; i < LEN(blocks); i++) if (blocks[i].signal > 0) sigaddset(&handledSignals, SIGRTMIN + blocks[i].signal); // Create a signal file descriptor for epoll to watch signalFD = signalfd(-1, &handledSignals, 0); event.data.u32 = LEN(blocks); epoll_ctl(epollFD, EPOLL_CTL_ADD, signalFD, &event); // Block all realtime and handled signals for (int i = SIGRTMIN; i <= SIGRTMAX; i++) sigaddset(&handledSignals, i); sigprocmask(SIG_BLOCK, &handledSignals, NULL); // Handle termination signals signal(SIGINT, termHandler); signal(SIGTERM, termHandler); // Avoid zombie subprocesses struct sigaction sa; sa.sa_handler = SIG_DFL; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_NOCLDWAIT; sigaction(SIGCHLD, &sa, 0); } void statusLoop() { // Update all blocks initially kill(0, SIGALRM); struct epoll_event events[LEN(blocks) + 1]; while (statusContinue) { int eventCount = epoll_wait(epollFD, events, LEN(events), -1); for (int i = 0; i < eventCount; i++) { unsigned short id = events[i].data.u32; if (id < LEN(blocks)) updateBlock(id); else signalHandler(); } if (eventCount != -1) writeStatus(); } } void init() { epollFD = epoll_create(LEN(blocks)); event.events = EPOLLIN; for (int i = 0; i < LEN(blocks); i++) { // Append each block's pipe to `epollFD` pipe(pipes[i]); event.data.u32 = i; epoll_ctl(epollFD, EPOLL_CTL_ADD, pipes[i][0], &event); // Calculate the max interval and tick size for the timer if (blocks[i].interval) { maxInterval = MAX(blocks[i].interval, maxInterval); timerTick = gcd(blocks[i].interval, timerTick); } } setupSignals(); } int main(const int argc, const char* argv[]) { writeStatus = setRoot; for (int i = 0; i < argc; i++) if (!strcmp("-d", argv[i])) writeStatus = debug; init(); statusLoop(); close(epollFD); close(signalFD); for (int i = 0; i < LEN(pipes); i++) closePipe(pipes[i]); return 0; }