75357b330c
Now using GLM instead of the custom math libraries. Sadly, this did not 100% fix the problem at hand but it does give some closure that the math is not the problem. Also it will be nice to have a general math library to not have to deal with creating every math function every time.
160 lines
4.1 KiB
C++
160 lines
4.1 KiB
C++
/// @ref gtx_quaternion
|
|
|
|
#include <limits>
|
|
#include "../gtc/constants.hpp"
|
|
|
|
namespace glm
|
|
{
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> quat_identity()
|
|
{
|
|
return qua<T, Q>(static_cast<T>(1), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> cross(vec<3, T, Q> const& v, qua<T, Q> const& q)
|
|
{
|
|
return inverse(q) * v;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> cross(qua<T, Q> const& q, vec<3, T, Q> const& v)
|
|
{
|
|
return q * v;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> squad
|
|
(
|
|
qua<T, Q> const& q1,
|
|
qua<T, Q> const& q2,
|
|
qua<T, Q> const& s1,
|
|
qua<T, Q> const& s2,
|
|
T const& h)
|
|
{
|
|
return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> intermediate
|
|
(
|
|
qua<T, Q> const& prev,
|
|
qua<T, Q> const& curr,
|
|
qua<T, Q> const& next
|
|
)
|
|
{
|
|
qua<T, Q> invQuat = inverse(curr);
|
|
return exp((log(next * invQuat) + log(prev * invQuat)) / static_cast<T>(-4)) * curr;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> rotate(qua<T, Q> const& q, vec<3, T, Q> const& v)
|
|
{
|
|
return q * v;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<4, T, Q> rotate(qua<T, Q> const& q, vec<4, T, Q> const& v)
|
|
{
|
|
return q * v;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER T extractRealComponent(qua<T, Q> const& q)
|
|
{
|
|
T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
|
|
if(w < T(0))
|
|
return T(0);
|
|
else
|
|
return -sqrt(w);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER T length2(qua<T, Q> const& q)
|
|
{
|
|
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> shortMix(qua<T, Q> const& x, qua<T, Q> const& y, T const& a)
|
|
{
|
|
if(a <= static_cast<T>(0)) return x;
|
|
if(a >= static_cast<T>(1)) return y;
|
|
|
|
T fCos = dot(x, y);
|
|
qua<T, Q> y2(y); //BUG!!! qua<T> y2;
|
|
if(fCos < static_cast<T>(0))
|
|
{
|
|
y2 = -y;
|
|
fCos = -fCos;
|
|
}
|
|
|
|
//if(fCos > 1.0f) // problem
|
|
T k0, k1;
|
|
if(fCos > (static_cast<T>(1) - epsilon<T>()))
|
|
{
|
|
k0 = static_cast<T>(1) - a;
|
|
k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
|
|
}
|
|
else
|
|
{
|
|
T fSin = sqrt(T(1) - fCos * fCos);
|
|
T fAngle = atan(fSin, fCos);
|
|
T fOneOverSin = static_cast<T>(1) / fSin;
|
|
k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
|
|
k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
|
|
}
|
|
|
|
return qua<T, Q>(
|
|
k0 * x.w + k1 * y2.w,
|
|
k0 * x.x + k1 * y2.x,
|
|
k0 * x.y + k1 * y2.y,
|
|
k0 * x.z + k1 * y2.z);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> fastMix(qua<T, Q> const& x, qua<T, Q> const& y, T const& a)
|
|
{
|
|
return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> rotation(vec<3, T, Q> const& orig, vec<3, T, Q> const& dest)
|
|
{
|
|
T cosTheta = dot(orig, dest);
|
|
vec<3, T, Q> rotationAxis;
|
|
|
|
if(cosTheta >= static_cast<T>(1) - epsilon<T>()) {
|
|
// orig and dest point in the same direction
|
|
return quat_identity<T,Q>();
|
|
}
|
|
|
|
if(cosTheta < static_cast<T>(-1) + epsilon<T>())
|
|
{
|
|
// special case when vectors in opposite directions :
|
|
// there is no "ideal" rotation axis
|
|
// So guess one; any will do as long as it's perpendicular to start
|
|
// This implementation favors a rotation around the Up axis (Y),
|
|
// since it's often what you want to do.
|
|
rotationAxis = cross(vec<3, T, Q>(0, 0, 1), orig);
|
|
if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
|
|
rotationAxis = cross(vec<3, T, Q>(1, 0, 0), orig);
|
|
|
|
rotationAxis = normalize(rotationAxis);
|
|
return angleAxis(pi<T>(), rotationAxis);
|
|
}
|
|
|
|
// Implementation from Stan Melax's Game Programming Gems 1 article
|
|
rotationAxis = cross(orig, dest);
|
|
|
|
T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
|
|
T invs = static_cast<T>(1) / s;
|
|
|
|
return qua<T, Q>(
|
|
s * static_cast<T>(0.5f),
|
|
rotationAxis.x * invs,
|
|
rotationAxis.y * invs,
|
|
rotationAxis.z * invs);
|
|
}
|
|
}//namespace glm
|