75357b330c
Now using GLM instead of the custom math libraries. Sadly, this did not 100% fix the problem at hand but it does give some closure that the math is not the problem. Also it will be nice to have a general math library to not have to deal with creating every math function every time.
108 lines
3.0 KiB
C++
108 lines
3.0 KiB
C++
namespace glm
|
|
{
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> mix(qua<T, Q> const& x, qua<T, Q> const& y, T a)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'mix' only accept floating-point inputs");
|
|
|
|
T const cosTheta = dot(x, y);
|
|
|
|
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
|
|
if(cosTheta > static_cast<T>(1) - epsilon<T>())
|
|
{
|
|
// Linear interpolation
|
|
return qua<T, Q>(
|
|
mix(x.w, y.w, a),
|
|
mix(x.x, y.x, a),
|
|
mix(x.y, y.y, a),
|
|
mix(x.z, y.z, a));
|
|
}
|
|
else
|
|
{
|
|
// Essential Mathematics, page 467
|
|
T angle = acos(cosTheta);
|
|
return (sin((static_cast<T>(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
|
|
}
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> lerp(qua<T, Q> const& x, qua<T, Q> const& y, T a)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'lerp' only accept floating-point inputs");
|
|
|
|
// Lerp is only defined in [0, 1]
|
|
assert(a >= static_cast<T>(0));
|
|
assert(a <= static_cast<T>(1));
|
|
|
|
return x * (static_cast<T>(1) - a) + (y * a);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> slerp(qua<T, Q> const& x, qua<T, Q> const& y, T a)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'slerp' only accept floating-point inputs");
|
|
|
|
qua<T, Q> z = y;
|
|
|
|
T cosTheta = dot(x, y);
|
|
|
|
// If cosTheta < 0, the interpolation will take the long way around the sphere.
|
|
// To fix this, one quat must be negated.
|
|
if(cosTheta < static_cast<T>(0))
|
|
{
|
|
z = -y;
|
|
cosTheta = -cosTheta;
|
|
}
|
|
|
|
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
|
|
if(cosTheta > static_cast<T>(1) - epsilon<T>())
|
|
{
|
|
// Linear interpolation
|
|
return qua<T, Q>(
|
|
mix(x.w, z.w, a),
|
|
mix(x.x, z.x, a),
|
|
mix(x.y, z.y, a),
|
|
mix(x.z, z.z, a));
|
|
}
|
|
else
|
|
{
|
|
// Essential Mathematics, page 467
|
|
T angle = acos(cosTheta);
|
|
return (sin((static_cast<T>(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
|
|
}
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> conjugate(qua<T, Q> const& q)
|
|
{
|
|
return qua<T, Q>(q.w, -q.x, -q.y, -q.z);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER qua<T, Q> inverse(qua<T, Q> const& q)
|
|
{
|
|
return conjugate(q) / dot(q, q);
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<4, bool, Q> isnan(qua<T, Q> const& q)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs");
|
|
|
|
return vec<4, bool, Q>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<4, bool, Q> isinf(qua<T, Q> const& q)
|
|
{
|
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs");
|
|
|
|
return vec<4, bool, Q>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w));
|
|
}
|
|
}//namespace glm
|
|
|
|
#if GLM_CONFIG_SIMD == GLM_ENABLE
|
|
# include "quaternion_common_simd.inl"
|
|
#endif
|
|
|