75357b330c
Now using GLM instead of the custom math libraries. Sadly, this did not 100% fix the problem at hand but it does give some closure that the math is not the problem. Also it will be nice to have a general math library to not have to deal with creating every math function every time.
114 lines
3.2 KiB
C++
114 lines
3.2 KiB
C++
/// @ref gtx_matrix_query
|
|
|
|
namespace glm
|
|
{
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isNull(mat<2, 2, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result = true;
|
|
for(length_t i = 0; result && i < m.length() ; ++i)
|
|
result = isNull(m[i], epsilon);
|
|
return result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isNull(mat<3, 3, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result = true;
|
|
for(length_t i = 0; result && i < m.length() ; ++i)
|
|
result = isNull(m[i], epsilon);
|
|
return result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isNull(mat<4, 4, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result = true;
|
|
for(length_t i = 0; result && i < m.length() ; ++i)
|
|
result = isNull(m[i], epsilon);
|
|
return result;
|
|
}
|
|
|
|
template<length_t C, length_t R, typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isIdentity(mat<C, R, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result = true;
|
|
for(length_t i = 0; result && i < m[0].length() ; ++i)
|
|
{
|
|
for(length_t j = 0; result && j < i ; ++j)
|
|
result = abs(m[i][j]) <= epsilon;
|
|
if(result)
|
|
result = abs(m[i][i] - 1) <= epsilon;
|
|
for(length_t j = i + 1; result && j < m.length(); ++j)
|
|
result = abs(m[i][j]) <= epsilon;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isNormalized(mat<2, 2, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result(true);
|
|
for(length_t i = 0; result && i < m.length(); ++i)
|
|
result = isNormalized(m[i], epsilon);
|
|
for(length_t i = 0; result && i < m.length(); ++i)
|
|
{
|
|
typename mat<2, 2, T, Q>::col_type v;
|
|
for(length_t j = 0; j < m.length(); ++j)
|
|
v[j] = m[j][i];
|
|
result = isNormalized(v, epsilon);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isNormalized(mat<3, 3, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result(true);
|
|
for(length_t i = 0; result && i < m.length(); ++i)
|
|
result = isNormalized(m[i], epsilon);
|
|
for(length_t i = 0; result && i < m.length(); ++i)
|
|
{
|
|
typename mat<3, 3, T, Q>::col_type v;
|
|
for(length_t j = 0; j < m.length(); ++j)
|
|
v[j] = m[j][i];
|
|
result = isNormalized(v, epsilon);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isNormalized(mat<4, 4, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result(true);
|
|
for(length_t i = 0; result && i < m.length(); ++i)
|
|
result = isNormalized(m[i], epsilon);
|
|
for(length_t i = 0; result && i < m.length(); ++i)
|
|
{
|
|
typename mat<4, 4, T, Q>::col_type v;
|
|
for(length_t j = 0; j < m.length(); ++j)
|
|
v[j] = m[j][i];
|
|
result = isNormalized(v, epsilon);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<length_t C, length_t R, typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER bool isOrthogonal(mat<C, R, T, Q> const& m, T const& epsilon)
|
|
{
|
|
bool result = true;
|
|
for(length_t i(0); result && i < m.length() - 1; ++i)
|
|
for(length_t j(i + 1); result && j < m.length(); ++j)
|
|
result = areOrthogonal(m[i], m[j], epsilon);
|
|
|
|
if(result)
|
|
{
|
|
mat<C, R, T, Q> tmp = transpose(m);
|
|
for(length_t i(0); result && i < m.length() - 1 ; ++i)
|
|
for(length_t j(i + 1); result && j < m.length(); ++j)
|
|
result = areOrthogonal(tmp[i], tmp[j], epsilon);
|
|
}
|
|
return result;
|
|
}
|
|
}//namespace glm
|